Get data
get_data.Rd
Get the data of the last millesime of all the datafiles found in data. All columns are returned as chr
(see below).
For private life reason, data returned by DiDo can be secretize (the value is
replaced by the string "secret") so readr can't determine data type. You can
use convert()
to convert number and integer.
get_data cache data before loading it. By default it saves the files
in tempdir()
. If you downloaded the same data again, il will first try to
find it in the cache
argument. If you want to cache data between
session, don't keep the default but use your own directory.
Arguments
- data
a tibble issued from
datafiles() or a dataframe with two columns
ridand
millesime`.- query
a query to pass to the API to select columns and filter on values.
- col_types
how to convert columns, the default is to use char for all columns
cols(.default = "c")
- concat
TRUE
ifTRUE
, returns a tibble with all data concatenated in one tibble, else returns a list of tibbles.- cache
the directory to cache/save downloaded files. Default is
tempdir()
Value
If concat is TRUE
(default), return a tibble with all data concatenated in
one tibble.
If concat is FALSE
, return a list of tibbles.
get_data()
returns only chr columns. Use convert
to convert columns to good types.
Details
For caching, get_data()
will use a reproductible name compose of the
datafile identifier (rid) and the stringification of the query passed to
get_data()
of a query is passed.
Examples
# get all columns
datafiles() %>%
dido_search("drom") %>%
get_data()
#> ℹ reading data from cache : /tmp/RtmpF5CYw6/6c79805c-def9-4695-9d9f-7d86599c4d8a-2022-10.csv
#> # A tibble: 55 × 10
#> DEPARTEMENT_CODE DEPARTEMENT_LIBELLE REGION_CODE REGION_LIBELLE ANNEE
#> <chr> <chr> <chr> <chr> <chr>
#> 1 971 Guadeloupe 01 Guadeloupe 2021
#> 2 972 Martinique 02 Martinique 2021
#> 3 973 Guyane 03 Guyane 2021
#> 4 974 La Réunion 04 La Réunion 2021
#> 5 976 Mayotte 06 Mayotte 2021
#> 6 971 Guadeloupe 01 Guadeloupe 2020
#> 7 972 Martinique 02 Martinique 2020
#> 8 973 Guyane 03 Guyane 2020
#> 9 974 La Réunion 04 La Réunion 2020
#> 10 976 Mayotte 06 Mayotte 2020
#> # ℹ 45 more rows
#> # ℹ 5 more variables: ESSENCE_M3 <chr>, GAZOLE_M3 <chr>, FIOUL_M3 <chr>,
#> # GPL_M3 <chr>, CARBUREACTEUR_M3 <chr>
# get only DEPARTEMENT_CODE and ESSENCE_M3 columns
datafiles() %>%
dido_search("drom") %>%
get_data(query = c(columns = "DEPARTEMENT_CODE,ESSENCE_M3"))
#> ℹ downloading data and caching to : /tmp/RtmpF5CYw6/6c79805c-def9-4695-9d9f-7d86599c4d8a-2022-10-columns=DEPARTEMENT_CODE,ESSENCE_M3.csv
#>
Downloading: 280 B
Downloading: 280 B
Downloading: 280 B
Downloading: 280 B
#> # A tibble: 55 × 2
#> DEPARTEMENT_CODE ESSENCE_M3
#> <chr> <chr>
#> 1 971 118664
#> 2 972 125134
#> 3 973 39528
#> 4 974 151834
#> 5 976 22575
#> 6 971 112378
#> 7 972 115415
#> 8 973 26717
#> 9 974 129677
#> 10 976 19592
#> # ℹ 45 more rows
# get only rows where `DEPARTEMENT_CODE == 971
datafiles() %>%
dido_search("drom") %>%
get_data(query = c(DEPARTEMENT_CODE = "eq:971"))
#> ℹ downloading data and caching to : /tmp/RtmpF5CYw6/6c79805c-def9-4695-9d9f-7d86599c4d8a-2022-10-DEPARTEMENT_CODE=eq971.csv
#>
Downloading: 380 B
Downloading: 380 B
Downloading: 380 B
Downloading: 380 B
Downloading: 380 B
Downloading: 380 B
#> # A tibble: 11 × 10
#> DEPARTEMENT_CODE DEPARTEMENT_LIBELLE REGION_CODE REGION_LIBELLE ANNEE
#> <chr> <chr> <chr> <chr> <chr>
#> 1 971 Guadeloupe 01 Guadeloupe 2021
#> 2 971 Guadeloupe 01 Guadeloupe 2020
#> 3 971 Guadeloupe 01 Guadeloupe 2019
#> 4 971 Guadeloupe 01 Guadeloupe 2018
#> 5 971 Guadeloupe 01 Guadeloupe 2017
#> 6 971 Guadeloupe 01 Guadeloupe 2016
#> 7 971 Guadeloupe 01 Guadeloupe 2015
#> 8 971 Guadeloupe 01 Guadeloupe 2014
#> 9 971 Guadeloupe 01 Guadeloupe 2013
#> 10 971 Guadeloupe 01 Guadeloupe 2012
#> 11 971 Guadeloupe 01 Guadeloupe 2011
#> # ℹ 5 more variables: ESSENCE_M3 <chr>, GAZOLE_M3 <chr>, FIOUL_M3 <chr>,
#> # GPL_M3 <chr>, CARBUREACTEUR_M3 <chr>
datafiles() %>%
dido_search("drom") %>%
get_data(query = c(DEPARTEMENT_CODE = "eq:971"), cache = tempdir())
#> ℹ reading data from cache : /tmp/RtmpF5CYw6/6c79805c-def9-4695-9d9f-7d86599c4d8a-2022-10-DEPARTEMENT_CODE=eq971.csv
#> # A tibble: 11 × 10
#> DEPARTEMENT_CODE DEPARTEMENT_LIBELLE REGION_CODE REGION_LIBELLE ANNEE
#> <chr> <chr> <chr> <chr> <chr>
#> 1 971 Guadeloupe 01 Guadeloupe 2021
#> 2 971 Guadeloupe 01 Guadeloupe 2020
#> 3 971 Guadeloupe 01 Guadeloupe 2019
#> 4 971 Guadeloupe 01 Guadeloupe 2018
#> 5 971 Guadeloupe 01 Guadeloupe 2017
#> 6 971 Guadeloupe 01 Guadeloupe 2016
#> 7 971 Guadeloupe 01 Guadeloupe 2015
#> 8 971 Guadeloupe 01 Guadeloupe 2014
#> 9 971 Guadeloupe 01 Guadeloupe 2013
#> 10 971 Guadeloupe 01 Guadeloupe 2012
#> 11 971 Guadeloupe 01 Guadeloupe 2011
#> # ℹ 5 more variables: ESSENCE_M3 <chr>, GAZOLE_M3 <chr>, FIOUL_M3 <chr>,
#> # GPL_M3 <chr>, CARBUREACTEUR_M3 <chr>